Preferential Nanoreinforcement of Thermoplastic Polyurethane Elastomers with Dispersed Nano-Clay

نویسنده

  • Shawna M. Liff
چکیده

It is difficult for scientists to engineer elastomeric materials that are both strong and tough like spider dragline silk. Inspired by the morphology of spider dragline silk and motivated to develop strong, tough, elastomeric polyurethanes to be used in soldier applications I have prepared polyurethane/clay nanocomposites. Polymer/clay nanocomposites have exhibited great potential for providing enhanced and possibly-tunable thermomechanical behavior. However, the biggest challenge facing advances in polymer/clay nanocomposites is the complete dispersion of nanoclay within the polymer matrix due to thermodynamic and kinetic limitations. A novel solvent exchange method to fully exfoliate and disperse discotic smectic clay, Laponite (diameter = 25 nm, thickness =1 nm), in three thermoplastic polyurethane elastomers (TPUs)-Elasthane 80A, HDI-PTMO PU, and PU-1-33-has been developed. This clay was selected because the diameter of one platelet is similar to the lateral dimension of a single hard-domain in block-polymeric TPU. WAXD, TEM, and AFM phase imaging of cast films following solvent exchange show that the nano-clay is well dispersed in the TPUs. Uniaxial mechanical testing showed that as much as a 23-fold increase in elastic modulus, 100% increase in toughness, and 50% increase in strength can be achieved without a reduction in extensibility when Laponite is added to Elasthane. Furthermore, the heat distortion temperature of the Elasthane can be increased from 101'C to more than 200'C, as measured by DMA, when 20 wt% Laponite is added. The HDIPTMO PU/Laponite nanocomposites behave like the Elasthane/Laponite nanocomposites, exhibiting an increase in elastic modulus, strength, and toughness without a loss in extensibility. In contrast, a PU-1-33 thin film exhibits a significant decrease in extensibility, strength, and toughness with no significant change in elastic modulus when filled with Laponite. Characterization shows that the Laponite is preferentially embedded within the polar hard domains of the Elasthane and HDI-PTMO PU and embedded within the soft domain of PU-1-33. The Laponite is attracted to the polar, hydrophilic soft segment constituent, polyethylene oxide, in PU-1-33. Ultimately, Laponite can be used to strengthen and toughen TPUs and the location of Laponite reinforcement can be altered by adjusting the polarity and hydrophilicity of the soft segment. Thesis Advisor: Gareth H. McKinley Title: Professor of Mechanical Engineering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple-length-scale deformation analysis in a thermoplastic polyurethane

Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to t...

متن کامل

Highly Resilient Non-Soften Thermoplastic Polyurethanes

Thermoplastic polyurethanes (TPUs) are a class of thermoplastic elastomers (TPEs) that are used in a variety of applications (1). TPUs exhibit low temperature flexibility, excellent abrasion resistance, high tensile strength and good processing characteristics. The current medical grade TPU’s have unique property that the flex modulus decreases (softens) when placed in the body. A new resilient...

متن کامل

Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment

Mechanical properties of thermoplastic polyurethane elastomers based on either polyether or polycarbonate (PC)-glycols, 4,4'-dipheylmethane diisocyanate (1,1'-methylenebis(4-isocyanatobenzene)), 1,4-butanediol, were controlled by restriction of crystallization of polymer glycols. For the polyether glycol based-polyurethane elastomers (PUEs), poly(oxytetramethylene) glycol (PTMG), and PTMG incor...

متن کامل

Synchrotron radiation study of the relation between structure and strain in polyurethane elastomers.

This paper describes a system for the study of the relation between structure and applied strain in thermoplastic polyurethane elastomers using the Australian National Beamline Facility at the Photon Factory, KEK, Tsukuba, Japan. The system uses the sagittal focusing monochromator at beamline 20B to provide a high-intensity focused beam which then falls on the specimen mounted in a miniature te...

متن کامل

Influences of NCO/OH and triol/diol Ratios on the Mechanical Properties of Nitro-HTPB Based Polyurethane Elastomers

The present study describes the effect of NCO/OH and triol/diol ratios on the mechanical properties of Nitro functionalized Hydroxyl-terminated polybutadiene (Nitro-HTPB) elastomers. The progress of the cure reaction of Nitro-HTPB and toluene diisocyanate (TDI) is evaluated by following up the variations in the IR absorption bands of the NCO stretching and the CO ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014